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ABSTRACT 
Kalman filters are often used to estimate the state variables 

of a dynamic system. However, in the application of Kalman 
filters some known signal information is often either ignored or 
dealt with heuristically. For instance, state variable constraints 
(which may be based on physical considerations) are often ne- 
glected because they do not fit easily into the structure of the 
Kalman filter. This paper develops an analytic method of in- 
corporating state variable inequality constraints in the Kalman 
filter. The resultant filter is a combination of a standard Kalman 
filter and a quadratic programming problem. The incorporation 
of state variable constraints increases the computational effort of 
the filter but significantly improves its estimation accuracy. The 
improvement is proven theoretically and shown via simulation 
results obtained from application to a tiu-bofan engine model. 
This model contains 16 state variables, 12 measurements, and 8 
component health parameters. It is shown that the new algo- 
rithms provide improved performance in this example over un- 
constrained Kalman filtering. 

INTRODUCTION 
For linear dynamic systems with white process and 

measurement noise, the Kalman filter is known to be an 
optimal estimator. However, in the application of Kalman 
filters there is often known model or signal information that 
is either ignored or dealt with heuristically [1]. This paper 
presents a way to generalize the Kalman filter in such a way 
that known inequaHty constraints among the state variables 
are satisfied by the state variable estimates. 

The method presented here for enforcing inequality 
constraints on the state variable estimates uses hard con- 

straints. It is based on a generalization of the approach 
presented in [2], which dealt with the incorporation of state 
variable equality constraints in the Kalman filter. Inequal- 
ity constraints are inherently more compHcated than equal- 
ity constraints, but standard quadratic programming results 
can be used to solve the Kalman filter problem with in- 
equality constraints. At each time step of the constrained 
Kalman filter, we solve a quadratic programming problem 
to obtain the constrained state estimate. A family of con- 
strained state estimates is obtained, where the weighting 
matrix of the quadratic programming problem determines 
which family member forms the desired solution. It is stated 
in this paper, on the basis of [2], that the constrained es- 
timate has several important properties. The constrained 
state estimate is unbiased (Theorem 1 below) and has a 
smaller error covariance than the unconstrained estimate 
(Theorem 2 below). We show which member of all possi- 
ble constrained solutions has the smallest error covariance 
(Theorem 3 below). We also show the one particular mem- 
ber that is always (i.e., at each time step) closer to the true 
state than the unconstrained estimate (Theorem 4 below). 
Finally, we show that the variation of the constrained es- 
timate is smaller than the variation of the unconstrained 
estimate (Theorem 5 below). 

The application considered in this paper is turbofan en- 
gine health parameter estimation [3]. The performance of 
gas turbine engines deteriorates over time. This deterio- 
ration can affect the fuel economy, and impact emissions, 
component Ufe consumption, and thrust response of the en- 
gine. Airlines periodically collect engine data in order to 
evaluate the health of the engine and its components. The 
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health evaluation is then used to determine maintenance 
schedules. Reliable health evaluations are used to antici- 
pate future maintenance needs. This offers the benefits of 
improved safety and reduced operating costs. The money- 
saving potential of such health evaluations is substantial, 
but only if the evaluations are reliable. The data used 
to perform health evaluations are typically collected dur- 
ing flight and later transferred to ground-based computers 
for post-flight analysis. Data are collected each flight at 
approximately the same engine operating conditions and 
corrected to account for variability in ambient conditions 
and power setting levels. Typically, data are collected for 
a period of about 3 seconds at a rate of about 10 or 20 
Hz. Various algorithms have been proposed to estimate en- 
gine health parameters, such as weighted least squares [4], 
expert systems [5], Kalman filters [6], neural networks [6], 
and genetic algorithms [7]. 

This paper applies constrained Kalman filtering to es- 
timate engine component efficiencies and flow capacities, 
which are referred to as health parameters. We can use our 
knowledge of the physics of the turbofan engine in order to 
obtain a dynamic model [8, 9]. The health parameters that 
we try to estimate can be modelled as slowly varying biases. 
The state vector of the dynamic model is augmented to in- 
clude the health parameters, which are then estimated with 
a Kalman filter [10]. The model formulation in this paper is 
similar to previous NASA work [11]. However, [11] was Hm- 
ited to a 3-state dynamic model and 2 health parameters, 
whereas this present work includes a more complete 16-state 
model and 8 health parameters. In addition, we have some 
a priori knowledge of the engine's health parameters: we 
know that they never improve. Engine health always de- 
grades over time, and we can incorporate this information 
into state constraints to improve our health parameter es- 
timation. (This is assuming that no maintenance or engine 
overhaul is performed.) This is similar to the probabilistic 
approach to turbofan prognostics proposed in [12]. The sim- 
ulation results that we present here show that the Kalman 
filter can estimate health parameter deviations with an av- 
erage error of less than 5%, and the constrained Kalman 
filter performs even better than the unconstrained filter. 

KALMAN FILTERING 
Consider the discrete linear time-invariant system given 

by 

Xk+i = Axk + Buk + Wk 

yk = Cxk + Cfe 

(1) 

where k is the time index, x is the state vector, u is 
the known control input, y is the measurement, and {wk} 
and {efc} are uncorrelated zero-mean white noise input se- 
quences. We use Q to denote the covariance of {wk} and R 
to denote the covariance of {cfe}, and x to denote the ex- 
pected value of X. The problem is to find an estimate ir^+i 
of Xfc+i given the measurements {j/o,2/i,• • •, J/fe}- We will 
use the symbol Yk to denote the column vector that con- 
tains the measurements {j/o,2/i, • ■ ■ >2/fe}- The Kalman filter 
can be used to solve this problem as follows. 

Kk = Ai:kC'^{C^kC'^ + R)'^ 

Xk+i = Axk + Buk + Kkijjk - Cxk) 

Sfe+i = (^Efc - KkCT,k)A^ + Q 

(2) 

(3) 

(4) 

where the filter is initialized with xo = So, and So = 
E[{xo - xo){xo - xof]. It can be shown [13] that the 
Kalman filter estimate has several attractive properties. It 
is unbiased, and of all affine estimators, it is the one that 
minimizes the variance of the estimation error. In addi- 
tion, if xo, {wk], and {cfc} are jointly gaussian, then the 
Kalman filter estimate is the one that maximizes the con- 
ditional probability density function of the state given the 
measurement history. 

KALMAN FILTERING WITH INEQUALITY CONSTRAINTS 
This section extends the well known results of the previ- 

ous section to cases where there are known linear inequality 
constraints among the state components. Also, several im- 
portant properties of the constrained filter are discussed. 
Consider the dynamic system of (1) where we are given the 
additional constraint 

It should be emphasized that in this paper we are con- 
fining the problem to the estimation of engine health param- 
eters in the presence of degradation only. There are specific 
engine fault scenarios that can result in abrupt shifts in 
filter estimates, possibly even indicating an apparent im- 
provement in some engine components. An actual engine 
performance monitoring system would need to include ad- 
ditional logic to detect and isolate such faults. 

Dxk < dk (5) 

where D is a known sy.n constant matrix, s is the number of 
constraints, n is the number of state variables, and s < n. It 
is assumed in this paper that D is full rank, i.e., that D has 
rank s. This is an easily satisfied assumption. If D is not 
full rank that means we have redundant state constraints. 
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In that case we can simply remove linearly dependent rows 
from D (i.e., remove redundant state constraints) until D 
is full rank. Three different approaches to the constrained 
state estimation problem are given in this section. The time 
index k is omitted in the remainder of this section for ease 
of notation. 

The Maximum Probability Method 
In this section we derive the constrained Kalman fil- 

tering problem by using a maximum probability method. 
Prom [13, pp. 93 ff.] we know that the Kalman filter esti- 
mate is that value of x that maximizes the conditional prob- 
ability density function P{x\Y). The constrained Kalman 
filter can be derived by finding an estimate x such that the 
conditional probability Pix\Y) is maximized and x satisfies 
the constraint (5). Maximizing P{x\Y) is the same as max- 
imizing its natural logarithm. So the problem we want to 
solve can be given by 

maxlnP(x|y) =^ min(i-a;)^E  ^{x-x) 
X 

such that Dx  <  d 

(6) 

Using the fact that the unconstrained state estimate x = x 
(the conditional mean of x), we rewrite the above equation 
as 

mm in(5^S-^x - 2x'^'E,'^x) such that Dx<d       (7) 

I x'^xP{x\Y)dx- 

2SF I xP{x\Y)dx 

(10) 

+ X   X 

Noting that the Kalman filter estimate is the conditional 
mean of x, i.e.. 

=  [ xP{x\Y)da (11) 

we formulate the first order conditions necessary for a min- 
imum as 

min(x^x - 2x'^x) such that Dx < d (12) 
X 

Again, this problem statement depends on the conditional 
gaussian nature of x, which in turn depends on the gaussian 
nature of XQ, {wk}, and {cfc} in (1). 

The Projection Method 
In this section we derive the constrained Kalman filter- 

ing problem by directly projecting the unconstrained state 
estimate x onto the constraint surface. That is, we solve 
the problem 

min(x - x)'^W{x - x) such that Dx < d        (13) 

Note that this problem statement depends on the condi- 
tional gaussian nature of x, which in turn depends on the 
gaussian nature oi XQ, {wk}, and {ck} in (1). 

The Mean Square Method 
In this section we derive the constrained Kalman filter- 

ing problem by using a mean square minimization method. 
We seek to minimize the conditional mean square error sub- 
ject to the state constraints. 

mmE{\\x - x||^|y) such that Dx < d (8) 

where II • II denotes the vector two-norm. If we assume that 
t 11      li 

x and Y are jointly gaussian, the mean square error can be 
written as 

Ei\\x - xf\Y) = f{x - xf{x - x)P{x\Y)dx      (9) 

where W is any symmetric positive definite weighting ma- 
trix. This problem can be rewritten as 

minix'^Wx - 2x^Wx) such that Dx < d        (14) 

The constrained estimation problems derived by the 
maximum probability method (7) and the mean square 
method (12) can be obtained from this equation by setting 
W = S~-^ and W = I respectively. Note that this deriva- 
tion of the constrained estimation problem does not depend 
on the conditional gaussian nature of x; i.e., xo, {wk}, and 
{efc} in (1) are not assumed to be gaussian. 

The Solution of the Constrained State Estimation Problem 
The problem defined by (14) is known as a quadratic 

programming problem [14, 15]. There are many algorithms 
for solving quadratic programming problems, almost all of 
which fall in the category known as active set methods. An 
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active set method uses the fact that it is only those con- 
straints that axe active at the solution of the problem that 
are significant in the optimality conditions. Assume that 
t of the s inequality constraints are active at the solution 
of (14), and denote by D and d the t rows of D and t el- 
ements of d corresponding to the active constraints. If the 
correct set of active constraints was known a priori then 
the solution of (14) would also be a solution of the equality- 
constrained problem 

mm{x'^Wx - 2x'^Wx) such that Dx = d       (15) 
X 

This shows that the inequality constrained problem defined 
by (14) is equivalent to the equality-constrained problem 
defined by (15). Note that x depends entirely on x at 
each time step. Although the equation for x is recursive as 
seen in (3), the equation for x is not recursive. Therefore, 
an inequality-constrained Kalman filter that uses active set 
methods to enforce the constraints completely reduces to an 
equality-constrained Kalman filter, even though the active 
set may change at each time step. The equality-constrained 
problem was discussed in [2], in which there is no assump- 
tion that the constraints remain constant from one time 
step to the next. Therefore, those results can be used to in- 
vestigate the properties of the inequality-constrained filter. 

Properties of the Constrained State Estimate 
In this section we examine some of the statistical prop- 

erties of the constrained Kalman filter. We use x to denote 
the state estimate of the unconstrained Kalman filter, and 
X to denote the state estimate of the constrained Kalman 
filter as given by (14), recalling that (7) and (12) are special 
cases of (14). 

Theorem 1. The solution x of the constrained state estima- 
tion problem given by (14) is an unbiased state estimator for 
the system (1) for any symmetric positive definite weighting 
matrix W. That is, 

E{x) = E{x) (16) 

Theorem 2. The solution x of the constrained state estima- 
tion problem given by (14) with W = E""\ where E is the 
error covariance of the unconstrained estimate given in (4), 
has an error covariance that is less than or equal to that of 
the unconstrained state estimate. That is, 

At first this seems counterintuitive, since the standard 
Kalman filter is by definition the minimum variance filter. 
However, we have changed the problem by introducing state 
variable constraints. Therefore, the standard Kalman filter } 
is no longer the minimum variance filter, and we can do 
better with the constrained Kalman filter. 

Theorem 3. Among all the constrained Kalman filters result-    ^ 
ing from the solution of (14), the filter that uses W = S"^ 
has the smallest estimation error covariance. That is, 

Cov{x - xs-i) < Cov{x - xw) for all W        (18) 

Theorem 4. The solution x of the constrained state estima- 
tion problem given by (14) with W = I satisfies the inequal- 
ity 

\\xk -Xk\\< \\xk - Xk\\ for all k (19) 

where || ■ || is the vector two-norm and x is the unconstrained 
Kalman filter estimate. 

Theorem 5. The error of the solution x of the constrained 
state estimation problem given by (14) with W = I is 
smaller than the unconstrained estimation error in the sense 
that 

TrlCov{x)] < Tr[Cov{x)] (20) 

Cov{x -x) < Cov{x — x) (17) 

where Tr[-] indicates the trace of a matrix, and Cov{-) indi- 
cates the covariance matrix of a random vector. 

The above theorems all follow from the equivalence 
of (14) and (15), and the proofs presented in [2]. We note 
that if any of the s constraints are active at the solution 
of (14), then strict inequalities hold in the statements of 
Theorems 2-5. The only time that equalities hold in the 
theorems is if there are no active constraints at the solution 
of (14); that is, if the unconstrained Kalman filter satisfies 
the inequality constraints. 

TURBOFAN ENGINE HEALTH MONITORING 
The high performance turbofan engine model used in 

this research is based on a gas turbine engine simulation 
software package called DIGTEM (Digital Turbofan Engine 
Model) [8, 16]. DIGTEM is written in Fortran and includes 
16 state variables. It uses a backward diflterence integration 
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scheme because the turbofan model contains time constants 
that differ by up to four orders of magnitude. 

The nonlinear equations used in DIGTEM can be found 
in [8, 9]. The time-invariant equations can be summarized 
as follows. 

X = f{x,u,p) + wi{t) 

y = g{x,u,p) + e{t) 

(21) 

X is the 16-element state vector, u is the 6-element control 
vector, p is the 8-element vector of health parameters, and y 
is the 12-element vector of measurements. The noise term 
wi{t) represents inaccuracies in the model, and e{t) rep- 
resents measurement noise. The state variables and their 
nominal values at the selected operating point are as fol- 
lows: 

• Low Pressure Turbine (LPT) rotor speed (9200 RPM) 
• High Pressure Turbine (HPT) rotor speed (11900 RPM) 
• Compressor volume stored mass (0.91294 Ibm) 
• Combustor inlet temperature (1325 R) 
• Combustor volume stored mass (0.460 Ibm) 
• HPT inlet temperature (2520 R) 
• HPT volume stored mass (2.4575 Ibm) 
• LPT inlet temperature (1780 R) 
• LPT volume stored mass (2.227 Ibm) 
• Augmentor inlet temperature (1160 R) 
• Augmentor volume stored mass (1.7721 Ibm) 
• Nozzle inlet temperature (1160 R) 
• Duct airflow (86.501 Ibm/s) 
• Augmentor airflow (194.94 Ibm/s) 
• Duct volume stored mass (6.7372 Ibm) 
• Duct temperature (696 R) 

The turbofan controls and their nominal values are as fol- 
lows: 

• Combustor fuel flow (1.70 Ibm/s) 
• Augmentor fuel flow (0 Ibm/s) 
• Nozzle throat area (430 in^) 
• Nozzle exit area (492 in^) 
• Fan vane angle (-1.7 deg) 
• Compressor vane angle (4.0 deg) 

The health parameters and their nominal values are as fol- 
lows: 

• Fan airflow (193.5 Ibm/s) 
• Fan efficiency (0.8269) 
• Compressor airflow (107.0 Ibm/s) 
• Compressor efl&ciency (0.8298) 
• HPT airflow (89.8 Ibm/s) 
• HPT enthalpy change (167.0 Btu/lbm) 

• LPT airflow (107.0 Ibm/s) 
• LPT enthalpy change (75.5 Btu/lbm) 

The turbofan measurements and their nominal values and 
signal-to-noise ratios (SNRs) are as follows: 

• LPT rotor speed (9200 RPM, SNR = 150) 
• HPT rotor speed (11900 RPM, SNR = 150) 
• Duct pressure (34.5 psia, SNR = 200) 
• Duct temperature (696 R, SNR = 100) 
• Compressor inlet pressure (36.0 psia, SNR = 200) 
• Compressor inlet temperature (698 R, SNR = 100) 
• Combustor pressure (267 psia, SNR = 200) 
• Combustor inlet temperature (1325 R, SNR = 100) 
• LPT inlet pressure (70.0 psia, SNR = 100) 
• LPT inlet temperature (1780 R, SNR = 70) 
• Augmentor inlet pressure (31.8 psia, SNR = 100) 
• Augmentor inlet temperature (1160 R, SNR = 70) 

The SNR values above are based on NASA experience and 
previously pubhshed data [17]. Sensor dynamics are as- 
sumed to be high enough bandwidth that they can be ig- 
nored in the dynamic equations [17]. Equation (21) can 
be hnearized about the nominal operating point by using 
the first order approximation of the Taylor series expan- 
sion. This gives a linear small signal system model defined 
for small excursions from the nominal operating point. 

6x = AiSx + BSu + A26P + wi{t) 

Sy = Ci6x + D6u + C-^Sp + e{t) 

(22) 

We note that 

^1 = ^ 

Ai{i.,j) 

dl 
dx 
Aa;(i) 
Ax(j) 

(23) 

Similar equations hold for the A2, Ci, and C2 matrices. We 
obtained numerical approximations to the Ai, A2, Ci, and 
C2 matrices by varying x and p from their nominal values 
(one element at a time) and recording the new x and y 
vectors in DIGTEM. 

The goal of our turbofan engine health monitoring prob- 
lem is to obtain an accurate estimate of Sp, which varies 
slowly with time. We therefore assume that 6p remains es- 
sentially constant during a single flight. We also assume 
that the control input is constant, so 6u = 0. (In real- 
ity, 6u T^ 0, which complicates the problem and will give 
different results than we present in this paper. This will 
be explored in further work.) This gives us the following 
equivalent discrete time system [18, pp. 90 ff.]. 
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6xk+i = AidSxk + A2dSpk + wik 

Syk = CiSxk + CiSpk + Cfc 

(24) 

where Au = exp(^iT) and A2d = A^ (Aid-7)^2 (assum- 
ing that Ai is invertible, which it is in our problem). We 
next augment the state vector with the health parameter 
vector [11] to obtain the system equation 

(25) 

where W2k is a small noise term (uncorrelated with wik) 
that represents model uncertainty and allows the Kalman 
filter to estimate time-varying health parameter variations. 
The discrete time small signal model can be written as 

fofc+l = 
Aid A2d 

0     7 
6xk 

_Spk_ 
+ Wlk 

W2k_ 

Syi c — C1C2] 
6c 

Si 
Cfc" 

Ok_ 
-h Cfc 

Sxk+i 
Spk+i 

= A 

SVk^C 

6xk 
Spk 

6xk 
6pk 

+ Wk 

+ ek 

(26) 

where the definitions of A and C are apparent from a com- 
parison of the two preceding equations. Now we can use 
a Kalman filter to estimate 6xk and Spk- Actually, we are 
only interested in estimating 6pk (the health parameter de- 
viations), but the Kalman filter gives us the bonus of also 
estimating Sxk (the excursions of the original turbofan state 
variables). Note that four of the state variables are directly 
measured with good SNRs. The Kalman filter equations 
automatically use this information to improve its estimate 
of all of the state variables and generate the optimal state 
estimate. 

It is known that health parameters do not improve over 
time. That is, 6p{l), 6p{2\ 6p{3), 6p{4), 6p{6), and 6p{8) 
are always less than or equal to zero and always decrease 
with time. Similarly, 6p{5) and 6p{7) (the two turbine air- 
flow parameters) are always greater than or equal to zero 
and always increase with time. In addition, it is known that 
the health parameters vary slowly with time. As an exam- 
ple, since 6p{l) is the constrained estimate of 6p{l), we can 
enforce the following constraints on 6p{l). 

Spil) < 0 

SPk+iii)<SPkW + ^i 

Spk+i{l)>SPkil)-Ji 

(27) 

where 7^*" and 7f are nonnegative factors chosen by the 
user that allows the state estimate to vary only within pre- 
scribed limits. Typically we choose 7J" > 71" so that the 
state estimate can change more in the negative direction 
than in the positive direction. This is in keeping with our 
a priori knowledge that this particular state variable never 
increases with time. Ideally we would have 71" = 0 since 
6p{l) never increases. However, since the state variable es- 
timate varies around the true value of the state variable, we 
choose 7]*' > 0. This allows some time-varying increase in 
the state variable estimate to compensate for a state vari- 
able estimate that is smaller than the true state variable 
value. 

These constraints are Unear and can therefore easily 
be incorporated into the form required in the constrained 
filtering problem statement (5). If the state constraints are 
nonhnear they can be linearized as discussed in [2]. Note 
that this does not take into account the possibihty of abrupt 
changes in health parameters due to discrete damage events. 
That possibihty must be addressed by some other means 
(e.g., residual checking [3]) in conjuction with the methods 
presented in this paper. 

SIMULATrON RESULTS 
We simulated the methods discussed in this paper us- 

ing MATLAB. We simulated a steady state 3 second burst 
of engine data measured at 10 Hz during each flight. The 
nonlinear DIGTEM software described in the previous sec- 
tion was used to generated the measurement data. Each 
data collection was performed at the single operating point 
shown earlier in this paper. The signal-to-noise ratios were 
determined on the basis of NASA experience and previously 
pubhshed data [17] and are shown earlier in this paper. The 
Kalman filter was re-hnearized around the state estimates 
every 50 flights. We used a one-sigma process noise in the 
Kalman filter equal to approximately 1% of the nominal 
state values to allow the filter to be responsive to changes 
in the state variables. We set the one sigma process noise 
for each component of the health parameter portion of the 
state derivative equation to 0.01% of the nominal parameter 
value. This was obtained by tuning. It was small enough 
to give reasonably smooth estimates, and large enough to 
allow the filter to track slowly time-varying parameters. For 
the constrained filter, we chose the 7 variables in_(27) such 
that the maximum allowable rate of change in 6p was the 
sum of a hnear and exponential function that reached 9% 
after 500 flights in the direction of expected change, and 3% 
after 500 flights in the opposite direction. The true health 
parameter values never change in a direction opposite to the 
expected change. However, we allow the state estimate to 
change in the opposite direction to allow the Kalman fllter 
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to compensate for the fact that the state estimate might be 
either too large or too small. We set the weighting matrix 
W in (14) equal to S"-' in accordance with Theorem 3. 

We simulated an exponential degradation of the eight 
health parameters over 500 flights. The initial health pa- 
rameter estimation errors were taken from one-sided normal 
distributions with standard deviations of 0.5% of their nom- 
inal values. The simulated health parameter degradations 
were representative of turbofan performance data reported 
in the literature [19]. We ran 30 Monte Carlo simulations 
like this, each with a different noise history and different 
initial estimation errors. Figures 1 and 2 show the Kalman 
filter's performance in a typical case when the initial esti- 
mation errors are zero. Both simulations represented in the 
figures have the same "random" measurement noise. Ta- 
ble 1 shows the performance of the filters averaged over all 
30 simulations. The standard Kalman filter estimates the 
health parameters to within 4.66% of their final degrada- 
tions. The constrained filter estimates the health param- 
eters to within 3.90% of their final degradations. These 
numbers show the improvement that is possible with the 
constrained Kalman filter. 

The improved performance of the constrained filter 
comes with a price, and that price is computational effort. 
The constrained filter requires about four times the compu- 
tational effort of the unconstrained filter. This is because 
of the additional quadratic programming problem that is 
required. However, computational effort is not a critical 
issue for turbofan health estimation since the filtering is 
performed on ground-based computers after each flight. 

Note that the Kalman filter works well only if the as- 
sumed system model matches reality fairly closely. The 
method presented in this paper, by itself, will not work well 
if there are large sensor biases or hard faults due to severe 
component failures. A mission-critical implementation of a 
Kalman filter should always include some sort of residual 
check to verify the vahdity of the Kalman filter results [20], 
particularly for the application of turbofan engine health 
estimation considered in this paper [3]. 

It can be seen from the figures that although the con- 
strained filter improves the estimation accuracy, the general 
trend of the state variable estimates does not change with 
the introduction of state constraints. This is because the 
constrained filter is based on the unconstrained Kalman 
filter. The constrained filter estimates therefore have the 
same shape as the unconstrained estimates until the con- 
straints are violated, at which point the state variable esti- 
mates are projected onto the edge of the constraint bound- 
ary. The constrained filter presented in this paper is not 
qualitatively different than the standard Kalman filter; it is 
rather a quantitative improvement in the standard Kalman 
filter. 

Table 1. KALMAN FILTER ESTIMATION ERRORS. THE NUMBERS 
SHOWN ARE RMS ESTIMATION ERRORS AVERAGED OVER 30 
SIMULATIONS WHERE EACH SIMULATION HAD A LINEAR-PLUS- 
EXPONENTIAL DEGRADATION OF ALL EIGHT HEALTH PARAMETERS. 
THE NUMBERS SHOW THE ERROR BETWEEN THE ESTIMATED AND 
ACTUAL DEGRADATION AS PERCENTAGES OF THE DEGRADATION AT 

THE FINAL TIME. 

Estimation Error (%) 

Health Parameter Unconstrained Constrained 

Fan Airflow 

Fan Efficiency 

Compressor Airflow 

Compressor Efficiency 

HPT Airflow 

HPT Enthalpy Change 

LPT Airflow 

LPT Enthalpy Change 

4.81 

5.85 

3.43 

4.82 

3.09 

4.48 

4.54 

6.28 

4.41 

4.60 

2.73 

3.80 

2.39 

3.76 

4.26 

5.22 

Average 4.66 3.90 

CONCLUSION 

We have presented an analytic method for incorporat- 
ing linear state inequality constraints in a Kalman filter. 
This maintains the state variable estimates within a user- 
defined envelope. The simulation results demonstrate the 
effectiveness of this method, particularly for turbofan en- 
gine health estimation. 

If the system whose state variables are being estimated 
has known state variable constraints, then those constraints 
can be incorporated into the Kalman filter as shown in this 
paper. However, in implementation, the constraints en- 
forced in the filter might be more relaxed than the true 
constraints. This allows the filter to correct state variable 
estimates in a direction that the true state variables might 
never change. This is a departure from strict adherence to 
theory, but in practice this improves the performance of the 
filter. This is an implementation issue that is conceptually 
similar to tuning a standard Kalman filter. 

We saw that the constrained filter requires a much 
larger computational effort than the standard Kalman filter. 
This is due to the addition of the quadratic programming 
problem that must be solved in the constrained Kalman fil- 
ter. The engineer must therefore perform a tradeoff between 
computational effort and estimation accuracy. 
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Figure 1. UNCONSTRAINED KALMAN FILTER ESTIMATES OF HEALTH 
PARAMETERS. TRUE HEALTH PARAMETER CHANGES ARE SHOWN AS 
HEAVY LINES. FILTER ESTIMATES ARE SHOWN AS LIGHTER LINES. 

200 300 
flight number 

Figure 2. CONSTRAINED KALMAN FILTER ESTIMATES OF HEALTH 
PARAMETERS. TRUE HEALTH PARAMETER CHANGES ARE SHOWN AS 
HEAVY LINES. FILTER ESTIMATES ARE SHOWN AS LIGHTER LINES. 
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